

BACTERIAL AND VIRAL BIOINFORMATICS RESOURCE CENTER

OVERVIEW

AUGUST 23, 2022

AGENDA

- BV-BRC Overview Presentation 10 Mins
- BV-BRC Website Tour 20 Mins
- Case Study: Crimean-Congo Hemorrhagic Fever comparative genomics 25 Mins
- Q and A / Discussion 5 Mins

BV-BRC MISSION

• To provide a one-stop-shop for data about human pathogenic bacteria and viruses integrated into a scalable resource for comparative bioinformatics, large-scale integrative data mining, multi-scale systems biology exploration, and machine learning that will support the evolving needs of the infectious disease research community and serve as a paradigm for research data resources

NIAID BIOINFORMATIC RESOURCE CENTERS (2019-2024)

KEY FEATURES

- Supporting diverse bacterial and viral communities
- Unified data model and real-time data integration processes
- Efficient data management to support exponential growth of pathogen data
- Consistent and accurate genome annotations and other derived data types
- Automated and manual curation of metadata
- Modular, interoperable, and compute-intensive high-throughput data analysis services
- Integrative analysis of multi-omics systems biology data using visual analytics tools
- Phylogenomic/epidemiological analysis for rapid outbreak response
- Explainable AI / machine learning based tools
- Private user workspaces for data analysis, sharing, and publishing
- Programmatic and batch access via APIs, Command-line Interface (CLI), and FTP
- Outreach and education using online tools and in-person workshops

INTERNATIONAL USER COMMUNITY

BV-BRC User Community

- 32,000+ Registered users
- 40,000+ Unique visitors per month
- 16,000+ Citations

Diverse User Base

- Basic ID researchers / biologists
 - Academia, Govt labs, Non-profit, Industry, Pharma
- Clinical researchers
 - Clinical microbiologists, physician scientists
- Epidemiologists
- Bioinformatician and computational biologists
- Data scientists
- Other data resource providers

Bioinformatics Resource Center

BV-BRC DATA

• Total 9.0M+ microbial and viral genomes

- 8.0M+ viral genomes, including 6.2M SARS-CoV-2
- 17K+ bacteriophage genomes
- 10 eukaryotic host genomes
- Uniform annotations across all genomes using VIGOR4 for viruses
 - 111M+ genes/proteins/mat peptides, and other genomic features
 - Protein functions, GO terms, EC numbers, protein families, domains and motifs
- Curated metadata
 - Host, collection date, geo location, other clinical and env metadata
- 220K+ experimentally characterized viral epitopes
- 11.5K+ viral protein structures
- 900+ curated Omics datasets
 - 6500+ curated biosets from differential expression analysis
 - 111 host response datasets from bacterial and viral infections
- 56M+ microbial and host-pathogen PPIs
- 1.6M surveillance and 47K serology records

Data Sources

- Data aggregated from Public Archives
- Data from NIAID Programs, e.g., CEIRS, SysBio, functional and structural genomics programs
- Derived Data from internal pipelines
- Data Integration
- Private Data in user workspace

GENOME GROWTH

Bacterial and Viral Bioinformatics Resource Center

BV-BRC SERVICES

Genomics Analysis

- Genome Assembly
- Genome Annotation
- Comprehensive Genome Analysis
- SARS-CoV-2 Genome Assembly and Annotation
- Similar Genome Finder
- BLAST
- Phylogenetic Tree
- Genome Alignment
- Primer Design
- Variation Analysis

Gene/Protein Analysis

- MSA and SNP Analysis
- Gene Tree
- Meta-CATS
- Proteome Comparison

Metagenomics Analysis

- Taxonomic Classification
- Metagenomic Binning
- Metagenomic Read Mapping
- **Transcriptomics Analysis**
 - Expression Import
 - RNA-Seq Analysis

Utility Tools

- ID Mapper
- Fastq Utilities

Services in blue, support bacterial AND viral use cases

Multiple Sequence Alignment

Whole Genome Alignment

Proteome Comparison

Phylogenetic Analysis

Variation Analysis

Brown												
	200,000	400,000	600,000	800,000	1,000,000	1,200,000	1,400,000	1,600,000	1,800,000	2,000,000	2,200,000	2,400,000
					*) Q Q	Q Q CP013317	- CP013317.5028050385 (107 e) Go ⊿	-		
			50,300									
Refere	nce sequènce	D C V		TTA	A V	3 X	ME	8 A 0	1 A	8 0	E L O	• • •
1												
A DE		A DE LA LA DE LE AUX		I O ATATATA D					9 1 9 1 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1			
		B Q T	1 5	V X A 5 X 5	A T G D	A A	H 8	L A P	× A	AA	P Q T	8 T 8
-	C Annotation					_	_					_
554.vi	w.vcf.gz			NUMBER OF T					SNV C = 0	fg/66	2922.peg.421A5285_0004	
										Probe	ble acyltransferase YING	
565.vi	w.vot.gz			substitution ACTT -> ACTO					SNV C -> G	Click I	or detailed information	
												-
SEE.vi	w.vcf.gz			SNV T = 0					SNV C = G			
5E7.vi	er.vcf.gz			SNV T -> G					SNV C → G			
						_						

Transcriptomic Analysis

NEW TOOLS FOR IRD/VIPR USERS

SARS-COV-2 TOOLS

SARS-COV-2 GENOME ASSEMBLY AND ANNOTATION

SARS-COV-2 VARIANT TRACKER

• NGS SERVICES:

- FASTQ UTILITIES
- DE NOVO ASSEMBLY

METAGENOMIC

TAXONOMIC CLASSIFICATION

METAGENOMIC BINNING

TRANSCRIPTOMICS

- RNA-SEQ ANALYSIS
- EXPRESSION IMPORT
- 3-D PROTEIN STRUCTURE VIEWER (NEW)

Services SARS-CoV-2 Genome Assembly and Annotation ()

The SARS-CoV-2 Genome Assembly and Annotation Service provides a streamlined "meta-service" that accepts raw reads and performs genome assembly, annotation, and variation analysis. For further explanation, please see the SARS-CoV-2 Genome Assembly and Annotation Service Quick Reference Guide and Tutorial.

Start With: 1

READ FILE ASSEMBLED CONTIGS

Parameters 1	
STRATEGY	
Auto	-
	TAXONOMY ID
Severe acute respiratory syndrome coror	2697049 🔻
MY LABEL	
My identifier123	
OUTPUT FOLDER	
	•
OUTPUT NAME	
Taxonomy + My Label	

SARS2 Analysis Report for Severe acute respiratory syndrome coronavirus 2 SRR15315387

Protein SNPs from assembly

Gene	SNPs
S	T19R T95I Y144S Y145N L452R T478K D614G P681R
ORF1ab	F924F F924F A1306S A1306S P2046L P2046L P2287S P2287S A2618T A2618T N2829N N2829N D2907D D2907D V2930L V2930L T3255I T3255I T3646A T3646A V3689V V3689V P314L G662S P1000L A1918V N2328N
ORF3a	S26L E239Q
М	G79G 182T
ORF7a	G38G V82A T120I
ORF8	G77S D119V F120L
N	D63G R203M G215C D377Y
ORF7b	T40I

Assembly statistics

Job ID	assembly_32337
Elapsed time	954 sec
User-selected Recipe	auto
Platform	ILLUMINA
Library type	illumina
Chosen recipe	onecodex
Number of Ns in assembly	422
Number of N blocks in assembly	4

Variation data:

REGION	POS	REF	ALT	REF_DP	REF_RV	REF_QUAL	ALT_DP	ALT_RV	ALT_QUAL	ALT_FREQ	TOTAL_DP
MN908947.3	210	G	Т	111	42	37	5406	2031	38	0.979703	5518
MN908947.3	241	С	Т	2	1	55	5347	1964	39	0.999626	5349
MN908947.3	3037	С	Т	2	0	37	7672	3479	36	0.999349	7677
MN908947.3	3037	С	Т	2	0	37	7672	3479	36	0.999349	7677
MN908947.3	4181	G	Т	218	105	37	7381	2920	37	0.970673	7604
MN908947.3	4181	G	Т	218	105	37	7381	2920	37	0.970673	7604
MN908947.3	6402	С	Т	171	58	39	7013	2846	37	0.97579	7187
MN908947.3	6402	С	Т	171	58	39	7013	2846	37	0.97579	7187
MN908947.3	7124	С	Т	89	36	37	2881	1232	37	0.970034	2970

Features annotated:

ID	Start	Strand	Length	Function
fig 2697049.3949155.CDS.1	255	+	6594	putative ORF1a polyprotein, N-terminal
fig 2697049.3949155.CDS.2	255	+	6594	putative ORF1ab polyprotein, N-terminal
fig 2697049.3949155.mat_peptide.1	255	+	540	leader protein
fig 2697049.3949155.mat_peptide.2	795	+	1914	nsp2
fig 2697049.3949155.mat_peptide.3	2709	+	4140	putative nsp3, N-terminal

BV-BRC: OUTREACH

- Virtual outreach
 - Online MOOC training courses
 - 5000+ enrolled in Bacterial Bioinformatics (Coursera)
 - Half-day virtual mini workshops / webinar series
 - SARS-CoV-2 Outbreak Response (Aug-Dec 2020)
 - Respiratory Pathogens (Feb-Jun 2021)
 - Tick-borne pathogens (March 2022)
 - Instructional videos addressing common user questions
 - Social media: Twitter, Facebook, YouTube, and Reddit
- Tutorials and user guides for newly developed tools
- Rapid response to user questions / helpdesk
- Attendance at national meetings
 - Presentations, booths and workshops (ASM Microbe, ASV, GVN)
- Strategic workshops (2-3 per year)
- Publications on new resource functionality

Locations of the 90+ workshops conducted by PATRIC (Blue) and ViPR/IRD (Red) over past 10 years

BV-BRC Website: <u>https://www.bv-brc.org/</u>

BACTERIAL AND VIRAL BIOINFORMATICS RESOURCE CENTER

Welcome to the Bacterial and Viral Bioinformatics Resource Center (BV-BRC), an information system designed to support research on bacterial and viral infectious diseases. Learn more about BV-BRC. Introductory material for transitioning PATRIC and IRD/ViPR users is provided in the sections at the bottom of this page.

This is the Beta Version of the website, designed to allow users to explore, try out features, and provide feedback to the BV-BRC team.

Common Tasks in BV-BRC

NEWS & ANNOUNCEMENTS

BV-BRC Beta Release

The Bacterial and Viral Bioinformatic Resource Center (BV-BRC) has released its new Beta website for researchers to use. ... read more

Embed

View on Twitter

TICK-BORN VIRUSES IN BUNYAVIRALES ORDER

Overview Taxor	iomy Genome	es Proteins	Protein Structures	Domains and Motifs	Epitopes	Experiments			
Virus Data Sumn	nary		Virus F	amilies					
Families Genera Species Genomes / Segmo	ents	74 1685 21452 7996562	Single-S RNA	Stranded Positive-Sense Caliciviridae	e Single-S RNA	Stranded Negative-Sense Bunyavirales	Double-Stranded RNA Reoviridae	Featured	Viruses Bacteriophages
Protein Coding G Mature Peptides 3D Protein Struct	enes (CDS) ures (PDB)	144923049 140971003 11502	0	Coronaviridae	R	Filoviridae	Single-Stranded DNA Parvoviridae		Dengue virus
				Flaviviridae	\bigcirc	Paramyxoviridae	Partially Double-Stranded DNA		Ebolavirus
				Hepeviridae		Orthomyxoviridae	Hepadnaviridae		Hepatitis C virus
				Picornaviridae Togaviridae	CS A	Pneumoviridae Rhabdoviridae	Double-Stranded DNA		Influenza A virus
				logarmado	S. S. S.		Asfarviridae	202	Lassa Virus
							Herpesviridae		Monkeypox Virus
							Polyomaviridae	6	SARS-CoV-2
							Poxviridae		Zika Virus

NIAID Bioinformatics Resource Centers

NAIROVIRIDAE SPECIES THAT INFECT HUMANS (BOLD)

Abu Hammad virus Artashat orthonairovirus Bandia virus Beiji nairovirus Burana virus Chim orthonairovirus Clo Mor viru Crimean-Congo hemorrhagic fever orthonairovirus Dera Ghazi Khan orthonairovirus **Dugbe orthonairovirus** Estero Real virus Farallon virus Geran virus Grotenhout virus Hazara virus Hughes orthonairovirus Kasokero orthonairovirus Kupe virus Nairobi sheep disease virus Nairovirus sp. Hc652

Nayun tick nairovirus Norway nairovirus 1 Pacific coast tick nairovirus Paramushir virus Punta Salinas virus Pustyn virus Qalyub orthonairovirus Rondonia orthonairovirus Sakhalin orthonairovirus Saphire II virus Soldado virus Songling virus South Bay virus **Tacheng Tick Virus** Taggert virus Tamdy orthonairovirus Tillamook virus Tofla virus Vinegar Hill virus Yezo virus

ORTHONAIROVIRUS GENOME & PROTEOME

Nucleoprotein (N): Structural virion protein (60–68 kD). Component of the RNP inside virions. Oligomerizes and encapsidates orthonairoviral genomic segments. Functions as an exoribonuclease.

Glycoprotein (GP): Structural virion protein consisting of two subunits (G_N 30–45 kD, G_C 72–84 kD). Produced via proteolytic cleavage from the GPC precursor. Inserts into virion membranes as GP spikes composed of G_N and G_C . As a putative class I fusion protein, GP mediates cell-surface and internal receptor binding, virion-cell membrane fusion and, thereby cell entry.

Large protein (L): Structural virion protein (250–450 kD) with RdRP, helicase, and endoribonuclease domains. Component of the RNP inside virions. Oligomerizes and mediates transcription and replication of orthonairoviral RNA segments. Mediates cap-snatching for viral mRNA capping.

THREE USE CASES

1) FINDING SPECIFIC MUTATION IN CRIMEAN CONGO HEMORRHAGIC FEVER VIRUS (CCHF) REPORTED IN THE LITERATURE

- SEARCH, ASSEMBLE, AND CURATE RELEVANT DATASETS
- CREATE MSA TO VERIFY AND LOOK FOR OTHER GENOMES
- VISUALIZE RELATED DATA (3D PROTEIN STRUCTURES)

2) IDENTIFY SEQUENCE VARIATIONS IN CCHF THAT CORRELATE WITH HOST RANGE AND GEOGRAPHIC LOCATION

- SEARCH, ASSEMBLE, AND CURATE DATASETS
- CREATE MSA TO VERIFY AND LOOK FOR OTHER GENOMES
- PHYLOGENETIC ANALYSIS TO REVEAL CORRELATION PATTERNS
- USE METACATS TO SEARCH FOR HOST- OR LOCATION-SPECIFIC SITES
- 3) ISOLATION AND CHARACTERIZATION OF AN "UNKNOWN" NAIROVIRUS.
 - SRA FILE ANALYSIS (TAXONOMIC CLASSIFIER)
 - READ QC AND MAPPING (FASTQ UTILS)
 - DE NOVO SEQUENCE ASSEMBLY (ASSEMBLY)
 - BLAST AGAINST VIRAL DATABASE (BLAST)
 - ANNOTATE MY GENOME (ANNOTATION)

A single mutation in Crimean-Congo hemorrhagic fever virus discovered in ticks impairs infectivity in human cells

```
Brian L Hua<sup>1</sup>, Florine Em Scholte<sup>1</sup>, Valerie Ohlendorf<sup>2</sup><sup>3</sup>, Anne Kopp<sup>2</sup><sup>3</sup>,
Marco Marklewitz<sup>2</sup><sup>3</sup>, Christian Drosten<sup>2</sup><sup>3</sup>, Stuart T Nichol<sup>1</sup>, Christina Spiropoulou<sup>#1</sup>,
Sandra Junglen<sup>#23</sup>, Éric Bergeron<sup>#1</sup>
```

- single amino acid change appears to make the virus less able to infect human cells
- mutation prevents viral-cell (human) fusion step
- may explain why this strain and others in the Europe 2 group do not cause severe human disease

Strain names:

R1116G

ref seq: IbAr10200 mutant: Malko Tarnovo-BG2012-T1303 (MT-1303) Mutation:

WHERE CAN I FIND OUT MORE?

INSTRUCTIONAL VIDEOS ON YOUTUBE

- TUTORIALS AND USER GUIDES
- HELPDESK
- SOCIAL MEDIA
 - TWITTER
 - FACEBOOK
 - REDDIT

@BVBRC_DB
@BVBRC19
R/BRC_USERS

ORGANISMS ***** SEARCHES ***** T

-BRC^{BETA}

HES 🔻 TOOLS & SERVICES 🔻

S 🔻 WORKSPACES 🔫

✓ HELP ✓

P 🔻 🛛 ABOUT 🔻

BACTERIAL AND VIRAL BIOINFORMATICS RESOURCE

Welcome to the Bacterial and Viral Bioinformatics Resource Center (BV-BRC), an informatic bacterial and viral infectious diseases. **Learn more about BV-BRC**. Introductory material fc is provided in the sections at the bottom of this page.

This is the Beta Version of the website, designed to allow users to explore, try out features,

Quick Start Quick References Tutorials Common Tasks CLI Tutorial Webinars Instructional Videos Workshops

Contact Us