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Transcriptome

The population of mRNAs expressed by a genome at any given time (Abbott, 1999)
The complete collection of transcribed elements of the genome. (Affymetrix, 2004)

mRNAs: 35,913 transcripts in human (including alternative spliced variants)

Non-coding RNAs
tRNAs (497 genes)
rRNAs (243 genes)
snmRNAs (small non-messenger RNAs)
microRNAs and siRNAs (small interfering RNAs)
snRNAs (small nuclear RNAs)

Pseudogenes (~ 2,000)
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Transcriptomics

» The study of the characteristics and regulation of the functional RNA
transcript population of cells and organisms under specified conditions
The population of functional RNA transcripts
The mechanisms that regulate their production

The dynamics and variability of the transcriptome (time, cell type, genotype,
external stimuli)
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Transcriptomics and Virology

Study the dynamics of viral gene expression during an infection cycle
Compare virus gene expression between acute infection, latency, and re-activation
Get an understanding of the host genes and pathways that respond to viral infection

Pathways required for viral replication (candidate drug targets)
Host response pathways (possible determinants of virulence)

Help elucidate the function of unknown genes based on their temporal and spatial
patterns (guilt by association)

Proxy for changes in the proteome and metabolome
Molecular biomarkers of disease
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* A very brief history of transcriptomics, including gene
expression microarray technologies

* RNA sequencing for transcriptomics analysis
* Single cell RNA sequencing
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Early Evolution of Transcriptomics Technologies

Northern blot — labor intensive, large amount of
material, use of radioactivity, one gene at a time

Macroarrays — more genes, still radioactivity

gRT-PCR — no radioactivity, but still low
throughput

ARn

v/

e

Microarrays — semi-quantitative, informatics
requirements
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Advantages and Disadvantages of Microarrays

* Advantages
Much higher throughput
Multiplex transcriptome-level analysis

* Disadvantages
Relatively high experimental variability
Sensitive to alternative splicing ambiguities
Difficult to determine absolute transcript numbers

No information about target size is obtained, which can be helpful in recognizing cross-
hybridization to non-specific or related targets

Only one or two samples can be analyzed at a time
Requires prior knowledge of transcript sequences to design probe sets
Doesn’t assess allele-specific expression
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RNA SEQUENCING FOR TRANSCRIPTOMICS
ANALYSIS

J. Craig Venter
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RNA-seq Advantages

Genome-wide gene expression quantification

More accurate
Unbiased

Essentially no noise or non-specific signal
Mapping genes and exon boundaries

Single base resolution
Alternative splicing detection

Novel transcripts detected
But data is voluminous and complex

Need scalable, fast and mathematically principled analysis software and LOTS of computing

resources
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Quality Control

* Quality assessment

Evaluate read library quality to identify poor quality samples and
contaminants

Phred scoring
QC content

Determine 1f primer and adapter sequences are present
Presence of other over-represented sequences (e.g., rRNA)
Software - FastQC, SAMStat, samtools, MISO
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Pass

Fail

fastQC examples and criteria

@ Per sequence GC content @ Kmer Content

0 Per base sequence qualty

; T
L i

nnnnn

ooooo

\\\\\

) Per base sequence qualty

ittt

4 ‘I

A 1

SETES U BB U BUBXUBNBXT DG ETHUD ST B BE TN B0 E G0N % G B MW R
L

High quality along the entire read length

w'

Mean sequence quality curve mostly unimodal above Phred score of 30
GC count mostly unimodal around 40-43% GC

Few overrepresented sequences

Few Kmer sequences with Obs/Exp Overall >10, except polyT early
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Adaptor & Quality Trimming

* Trimmomatic
Performs both primer/adapter and quality trimming
Paired End (PE) aware: writes unpaired reads to separate file
User provided adapter/primer .fasta file

» Example parameters for quality trimming

Trim leading and trailing bases by phred score (e.g., <3)

Quality trimming by user-specified base pair sliding window (e.g., 4 bp) and
average phred score (e.g., <12)

Remove reads shorter than user-specified length (e.g., 60 bp)

Bolger Anthony, Lohse Marc, Usadel Bjoern. “Trimmomatic: a flexible trimmer for lllumina sequence J. Craia V
data” bicinformatics Vol. 30 no. 15 2014, pages 2114-2120 doi:10.1093/bicinformatics/btu170. . Craig Venter
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Tuxedo RNA-seq Pipeline

- Read Transcript Transcript Differential
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|

Raw sequence Reference
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(.fastq files) (.fafile)

Gene
annotation CummRbund

(.gtf file)

Inputs

Visualization
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Current “Tuxedo” RNA-seq Pipeline
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Current “Tuxedo” RNA-seq Pipeline
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RNA-seq reads -
(2 x 150 bp) HISAT2 StringTie e DEseq
I T | )

Gene
annotation

Raw sequence Reference
data genome

(.fastq files) (.fa file) (.gtf file)

Venter
Inputs <

T UTE




HISAT2

Strategy: HISAT?2 uses a genome indexing scheme in order to
make the alignment process more efficient and more accurate

A genome index is a type of preprocessing that compresses the size of the text
and makes queries fast: “Like the index at the end of a book, an index of a
large DNA sequence allows one to rapidly find shorter sequences embedded
within it.”

HISAT?2 is based on a Hierarchical Graph FM * index (HGFM). It generates
one global GFM index but also many local indexes (each index representing a
genomic region of 56 Kbp, with 55,000 indexes needed to cover human
genome). At an index size of 56 Kbp, over 90% of introns are contained
within the same index.

The algorithm first searches the global index for a given read to find a region
of interest, then loads the local index for that region and aligns the read. This
gives significant efficiency boost, but also increases accuracy as the alignment
process only attempts to align the potentially spliced reads within the context
of the small index as opposed to the whole genome.

W Read 4= Global Search
Exon 4= Local Search

W intron 4= Extension

Gene model a2

26,047,287 26,047,436 20451336 2451622

o I I 2
Reads mapped [ et I )
to original transcript o —

N - s 2 2020 .
I
Global search
Il - s - 0=

mismare: —— S
—

Local FM index for chr22 from 24,417,280 to 24,482,559

- T - 0

26,447,287 » was1622

Local alignment

Supplementary Figure 8
Three working examples demonstrating how HISAT applies its hierarchical indexing for fast and sensitive alignment.

The examples include alignment of one exonic read and two junction reads (one an intermediate-anchored read and the other a long-
anchored read). Reads are error-free and 100-bp long.

*Burrows-Wheeler transform and the Ferragina-Manzini (FM) index - https://en.wikipedia.org/wiki/FM-index
** Figure adapted from “Kim D, Langmead B and Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 2015” supplemental
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https://en.wikipedia.org/wiki/FM-index
http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.3317.html
http://www.nature.com/nmeth
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StringTie

»  Strategy: StringTie uses a graph-based
approach called network flow

1. pulls in a cluster of reads for a region given
by the alignment.

2. Builds a splice graph of all isoforms for a
given gene based on the annotation provided.

3. Estimates heaviest flow using reads aligned
to exons (nodes) and for that transcript a flow
network is built.

4. From the flow network, the abundance of
that transcript is then estimated by maximal
flow. These assembled reads are then removed.

5. Process iterates until all reads are assigned to
a transcript.

Pertea, M., Pertea, G., Antonescu, C. et al. StringTie enables
improved reconstruction of a transcriptome from RNA-seq
reads. Nat Biotechnol 33, 290-295 (2015).

Genome
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(super)-reads , ———— = e isoform 2
isoform 3

i
-

ﬂ Step 3: build alternative splice graph

Build spllce graph

i? /_Eg: Update
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Splice graph with
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°o
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StringTie optional input - GTF

GENCODE
NUNLVINVAN

Human Mouse How to access data FAQ Documentation About us

Format description of GENCODE GTF

A. TAB-separated standard GTF columns

column-number content values/format
1 chromosome name chr{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,X,Y,M} or GRC accession ?
2 annotation source {ENSEMBL,HAVANA}
3 feature type {gene,transcript,exon,CDS,UTR,start_codon,stop_codon,Selenocysteine}
4 genomic start location integer-value (1-based)
5 genomic end location integer-value
[ score(not used)
7 genomic strand {+-}
8 genomic phase (for CDS features) {0,1,2,.}
9 additional information as key-value pairs see below

2 Scaffolds, patches and haplotypes names correspond to their GRC accessions. Please note that these are different from the Ensembl names.

https://www.gencodegenes.org/pages/data_format.html J. Craig Venter
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Additional information

B. Key-value pairs in 9th column (format: key "value";)

B.1. Mandatory fields

key name
gene_id
transcript_id 9
gene_type
gene_status ©
gene_name
transcript_type 9
transcript_status®®
transcript_name 9
exon_number f
exon_id f

level

feature type(s)

all

all except gene

all

all

all

all except gene

all except gene

all except gene

all except gene/transcript/Selenocysteine
all except gene/transcript/Selenocysteine

all

value format
ENSGXXXXXXXXXXXX Be_Xe
ENSTXXXXXXXXXXX.X Pe X8
list of biotypes
{KNOWN, NOVEL, PUTATIVE}
string
list of biotypes
{KNOWN, NOVEL, PUTATIVE}
string
integer (exon position in the transcript from its 5' end)
ENSEXXXXXXXXXXXX P X8

1 (verified loci),
2 (manually annotated loci),
3 (automatically annotated loci)

release
all
all
all
until 25 and M11
all
all
until 25 and M11
all
all
all

all

J. Craig Venter
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Example GTF

Example GTF lines:

chrl9
chrl9
chrl9
chrl9
chrl9
chrl9
chrl9
chrl9
chrl9
chrl9

HAVANA
HAVANA
HAVANA
HAVANA
HAVANA
HAVANA
HAVANA
HAVANA
HAVANA
HAVANA

gene 405438 409170 5 - o gene_id "ENSG00000183186.7"; gene_ type "protein coding"; gene name "C2CD4C"; level 2; havar
transcript 405438 409170 o - c gene_id "ENSG00000183186.7"; transcript_id "ENST00000332235.7"; gene_type "protein cc
exon 409006 409170 5 - o gene_id "ENSG00000183186.7"; transcript id "ENST00000332235.7"; gene type "protein coding"
exon 405438 408401 o - 5 gene_id "ENSG00000183186.7"; transcript id "ENST00000332235.7"; gene type "protein coding"
CDS 407099 408361 5 - 0 gene_id "ENSG00000183186.7"; transcript id "ENST00000332235.7"; gene_type "protein coding";
start_codon 408359 408361 o - 0 gene_id "ENSG00000183186.7"; transcript id "ENST00000332235.7"; gene type "protein ¢
stop_codon 407096 407098 o - 0 gene_id "ENSG00000183186.7"; transcript_id "ENST00000332235.7"; gene_type "protein cc
UTR 409006 409170 o - a gene_id "ENSG00000183186.7"; transcript id "ENST00000332235.7"; gene_type "protein coding";
UTR 405438 407098 o - . gene_id "ENSG00000183186.7"; transcript id "ENST00000332235.7"; gene_ type "protein coding";
UTR 408362 408401 o - o gene_id "ENSG00000183186.7"; transcript id "ENST00000332235.7"; gene_ type "protein coding";

J. Craig Venter
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StringTie
output - GTF

1. StringTie's primary GTF output

The primary output of StringTie is a Gene Transfer Format (GTF) file that contains details of the transcripts that StringTie
assembles from RNA-Seq data. GTF is an extension of GFF (Gene Finding Format, also called General Feature Format), and is
very similar to GFF2 and GFF3. The field definitions for the 9 columns of GTF output can be found at the Ensembl site here. The
following is an example of a transcript assembled by StringTie as shown in a GTF file (scroll right within the box to see the full field
contents):

segname source feature start end score strand frame attributes
chrX StringTie transcript 281394 303355 1000 + gene_id "ERR18804
chrX StringTie exon 281394 281684 1000 + gene_id "ERR18804

Description of each column's values:

= seqname: Denotes the chromosome, contig, or scaffold for this transcript. Here the assembled transcript is on chromosome
X.

= source: The source of the GTF file. Since this example was produced by StringTie, this column simply shows 'StringTie'.

= feature: Feature type; e.g., exon, transcript, mRNA, 5'UTR).

= start: Start position of the feature (exon, transcript, etc), using a 1-based index.

= end: End position of the feature, using a 1-based index.

= score: A confidence score for the assembled transcript. Currently this field is not used, and StringTie reports a constant value
of 1000 if the transcript has a connection to a read alignment bundle.

= strand: If the transcript resides on the forward strand, '+'. If the transcript resides on the reverse strand, '-'.

= frame: Frame or phase of CDS features. StringTie does not use this field and simply records a ".".
= attributes: A semicolon-separated list of tag-value pairs, providing additional information about each feature. Depending on
whether an instance is a transcript or an exon and on whether the transcript matches the reference annotation file provided
by the user, the content of the attributes field will differ. The following list describes the possible attributes shown in this
column:
= gene_id: A unique identifier for a single gene and its child transcript and exons based on the alignments' file name.
= transcript_id: A unique identifier for a single transcript and its child exons based on the alignments' file name.
= exon_number: A unique identifier for a single exon, starting from 1, within a given transcript.

reference_id: The transcript_id in the reference annotation (optional) that the instance matched.

= ref_gene_id: The gene_id in the reference annotation (optional) that the instance matched.

= ref_gene_name: The gene_name in the reference annotation (optional) that the instance matched.
= cov: The average per-base coverage for the transcript or exon.

= FPKM: Fragments per kilobase of transcript per million read pairs. This is the number of pairs of reads aligning to this
feature, normalized by the total number of fragments sequenced (in millions) and the length of the transcript (in
kilobases).

= TPM: Transcripts per million. This is the number of transcripts from this particular gene normalized first by gene length,
and then by sequencing depth (in millions) in the sample. A detailed explanation and a comparison of TPM and FPKM
can be found here, and TPM was defined by B. Li and C. Dewey here.

http://ccb.jhu.edu/software/stringtie/index.shtml?t=manual
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RPKM Normalization

Sample 1

\l, mRNA isolation

‘l’ Fragmentation
RNA -> cDNA

Sequence fragment end(s)

; -
—(-
e —
; —
y Map reads
Genome ¢ = = =
[ —] ]
Reference 7 A B
Transcriptome

Calculate transcript abundance

Gene A Gene B
Sample 1 4 4

# of Reads

Gene A Gene B
Sample 1 4 2

Reads per kilobase of exon

Gene A | Gene B | Total
Sample 1 4 2 6
Sample 2 7 5 12

Reads per kilobase of exon

Gene A | Gene B | Total
Sample 1 7 3 6
Sample 2 .6 4 12

Reads per kilobase of exon per million mapped reads

RPKM

J. Craig Venter
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Alternative Normalized Counts

RPKM

« Reads per kilobase per million normalizes the raw count by transcript length and sequencing
depth.

¢ RPKM = (CDS read count * 10%) / (CDS length * total mapped read count)
FPKM

« Same as RPKM except if the data is paired then only one of the mates is counted, i.e., fragments
are counted rather than reads

TPM

* Transcripts per million (as proposed by Wagner et al 2012) is a modification of RPKM designed
to be consistent across samples. It is normalized by total transcript count instead of read count in
addition to average read length.

¢ TPM = (CDS read count * mean read length * 10%) / (CDS length * total transcript count)

J. Craig Venter
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DEseq2

0.25 4

 Characteristics of RNAseq data 02

Non-normal distribution of expression values  °%;

® NegBinomial(0.2,1)
0O NegBinomial(0.32,7)
0O NegBinomial(0.6,10)

0.1 4

Discrete rather than continuous

. 0.05
Dependence of variance on the mean

(overdispersion) 5

Small sample sizes
* DEseq2
Model expression as a negative binomial distribution

Corrects dispersion estimates that are too low
through modeling of the dependence of the
dispersion on the average expression strength over
all samples

Love, M.1., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol 15, 550 (2014). https://doi.org/10.1186/s13059-014-0550-8



Functional enrichment analyses

* GO Enrichment "I;jh; f(j;ifgne Ontology

« GO-BAYES

- GSEA I .
- Q@“ Enrichr

* Enrichr ] N

Gene Set Enrichment Analysis
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| ' “ﬂ. DAVID Bioinformatics Resources 6.7
“ & r A National Institute of Allergy and Infectious Diseases (NIAID), NIH

Functional Annotation Chart

Help and Manual

Current Gene List: List_1
Current Background: Homo sapiens
580 DAVID IDs

B Options

| Rerun Using Options | | Create Sublist |

19 chart records Ki_Download File
I R L T EC T T
KEGG_PATHWAY Cytokine-cytokine receptor interaction - 5.0E-11 5.8E-9
O KEGG_PATHWAY < RIG-I-like rece;tor si;nalin; ;athwa; > RT & 13 2.2 2.7E-6 1.6E-4
O KEGG_PATHWAY NOD-like receptor signaling pathway RT & 12 2.1 4.3E-6 1.7E-4
] KEGG_PATHWAY Toll-like receptor signaling pathway RT = 15 2.6 4.5E-6 1.3E-4
J KEGG_PATHWAY MAPK signaling pathway RT w 23 4.0 5.5E-5 1.3E-3
OJ KEGG_PATHWAY Jak-STAT signaling pathway RT 16 2.8 1.6E-4 3.0E-3
O KEGG_PATHWAY Chemokine signaling pathway RT = 17 2.9 4.0E-4 6.6E-3
O KEGG_PATHWAY Hematopoietic cell lineage RT & 9 1.6 7.1E-3 9.8E-2
O KEGG_PATHWAY B cell receptor signaling pathway RT § 8 1.4 1.1E-2 1.4E-1
OJ KEGG_PATHWAY Neurotrophin signaling pathway RT & 10 1.7  2.1E-2 2.2E-1
()] KEGG_PATHWAY Apoptosis RT & 8 1.4  2.4E-2 2.3E-1
O KEGG_PATHWAY T cell receptor signaling pathway RT & 9 1.6  2.6E-2 2.2E1 Venter
O KEGG_PATHWAY Cytosolic DNA-sensing pathway RT & 6 1.0 3.4E-2 2.7E-1 T_U T E



Highlight factors in KEGG Pathways

Pathway information generated by KEGG. @ Stop Blinking
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Virology and Transcriptomics

Study the dynamics of viral gene expression during and infection cycle
Compare virus gene expression between acute infection, latency, and re-activation
Get an understanding of the genes and pathways that respond to viral infection

Pathways required for viral replication (candidate drug targets)
Host response pathways (possible determinants of virulence)

Help elucidate the function of unknown genes based on their temporal and spatial
patterns (guilt by association)

Proxy for changes in the proteome and metabolome
Molecular biomarkers of disease

J. Craig Venter
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SINGLE CELL RNA-SEQ

J. Craig Venter
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Single Cell Profiling

* Cells are the fundamental functional _. " i * Transcriptional profiling of bulk
units of multicellular organisms <& — samples obscures the cellular

- Different cell types play different complexity of tissues

physiological roles in the body « Single cell RNA sequencing

allows us to quantify cellular
phenotypes in an unbiased fashion,
enabling the evaluation of both
known and novel cell subsets in
tissue samples

* Cell identity and function (phenotype)
is dictated by the subset of
genes/proteins expressed

* Abnormalities in the expressed
genome (disorders) form the physical

basis of disease * Explainable Artificial Intelligence

has emerged as a valuable tool to
characterize this complexity

* Understanding normal and abnormal ;
cellular phenotypes is key for : :_\," e
diagnosing disease and for identifying F -

b 2 .n ﬂ i AR
therapeutic targets

Bruce Wetzel & Harry Schaefer, National Cancer Institute
http://en.wikipedia.org/wiki/Image:SEM_blood_cells.jpg

J. Craig Venter
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Cell lysis (Steps 1-8)

|

Poly(A)* RNA
U AAAAAAAAAA

l Oligo(dT) primer §§

Reverse transcription
and terminal transferase (Steps 9-11)

LNA-containing TSO
EET] (GGG o/ S S S AAAAAAAAAA

e \
l Template switching

by reverse transcriptase (Steps 9-11)
ISPCR primers

 —
I CCC | E—

ISPCR primers
PCR preamplification of cDNA (Steps 12—-14)
PCR cleanup (Steps 15-26)

| e— (] | E—
I CCC | E—

i Tagmentation (Tn5) (Steps 28-31)

® R R R

| ——c{c{c] | —
] CCC | E—

i Gap repair, enrichment PCR

. . and PCR purification (Steps 32-36)
P5 primer i5 index

[ =am ]
-
- —
T
i7 index P7 primer
Sequencing (Steps 37-41)

I i
4— Read2seq

iSiindexseq; ‘Readit seq Sequencing-ready fragment —J» {7 index seq

Smart-seq2

Poly-A hybridization with 30nt polyT and
25nt 5' anchor sequence

RT adding untemplated C

Template switching with TSO

Locked nucleic acid binds to untemplated C
RT switches template

Preamplification / cleanup

DNA fragmentation and adapter ligation
together

Gap repair, enrich, purify

Picelli S, (2013) Nat Methods 10:1096-8.

J. Craig Venter
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Smart-Seq2

Frozen cortical tissue slab 350 um sections Nissl stained Sort

FSC-A

1ia

L e mai e
2 107 10* 10°

AF-594

-194

* Deposit single nuclei

into 2ul Triton, ’ * Add dNTPs ; * SmartSeq_2 reverse
ERCC, RNase-In & oligo-dT transcription

* Freeze in * Lyse at 72°C * Biotin-TSO, DTT
EtOH/dry ice for 3 min & betaine cycles
* Store @-80°C
* Bead
cleanup

* NextSeq® * Bead * Nextera® * Quality
500 cleanup XT library control
* 2x 150 * Picogreen * 96 or 384 sample * Picogreen
paired-end * Library bar codes * Bioanalyzer . ™
pooling - Tagman - ERCC & ACTB Crai g Venter
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10X Genomics

a. 8-Channel Microfluidics Chip Barcoded
cDNA
o — (0000000 e
Cells + Reagents = | @ @ . &) '. (S . o Break  Amplify Construct o
Beads — O O Q. © @ ® © © Emusion cDNA Library q
OOOQ.OOOO —t GEM Outlet = > > > >
b RO it : : _____________ e _.: - Cc
I . ‘ GEMs Cell Lysis
’ Poly(A) + RNA
' — O O o . . ‘O — O l Read 1 10x UMl Poly(dT)VN
° 4 Barcode
I Collect o @° 1 d. J RT
| 34444 Switch Oligo
O i e i s i e R L - a4y ppanarnannn T —
Barcoded Primer Cells Qil Single Cell o —
Gel Beads Reagents GEMs
Bulk J cDNA Amplification I
rrrrr
I
_
PCR Primer l Clean-up
|
|
Enzymatic Fragmentation,
J End Repair, A-Tail, Ligation, Sample Index PCR
I
— . o
P5 Read1  10¢ UM Poly(dT)VN Read2  sample | . c ra l g ve n t e r

+ NS T I T UTE



characteristics
Genes detected
Transcript structure
Alternative splicing
PCR amplification bias
Throughput

Labor intensive

Cost

Smart-seq vs 10X

Smart-seq

4000 - 6000

Full length transcripts
Yes

Yes

100-1000’s

Yes

~$30/cell

10X

1000 - 2000

3’ or 5’ end only
No

No (UMI)
10,000

No

~$1/cell

J. Craig Venter
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scRINA-seq Processing & Analysis Workflow

Dimensionality Reduction &
Clustering

Adaptor and
Quality Trimming
Trimmomatic, FASTX,

Doublet & QC cell
filtering

Alignment Mappin
HISgAT2, RSEM, B%\E\’rtie

Seurat
Scanpy

CellxGene

Dimensionality Reduction

Pt e Marker Gene Identification

NS-Forest

CellxMarkerGene

Cell Type Matching
FR-Match

M J. Craig Venter
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Dimensionality Reduction, Unsupervised Clustering and Visualization

*  Strategy: using cell by gene expression values, perform PCA, unsupervised clustering and visualization in
projected space
Unsupervised clustering

Louvain — graph-based community detection algorithm; Vincent Blondel, University of Louvain; J. Stat. Mech.
(2008) P10008

Leiden — improvement to Louvain to ensure that all communities are guaranteed to be connected; Vincent Traag,
Leiden University; https://www.nature.com/articles/s41598-019-41695-z

SC3 - unsupervised consensus clustering using multiple distance metrics, and dimensionality reduction methods for a
user defined range of k (clusters); Martin Hemberg, Wellcome Trust Sanger Institute;
https://doi.org/10.1038/nmeth.4236.

Visualization in projected space
tSNE - van der Maaten, L.J.P.; Hinton, G.E. (Nov 2008). "Visualizing Data Using t-SNE" (PDF). Journal of Machine
Learning Research. 9: 2579-2605.

UMAP - Mclnnes, Leland; Healy, John; Melville, James (2018-12-07). "Uniform manifold approximation and
projection for dimension reduction". arXiv:1802.03426.

Platforms
Seurat - Rahul Satija, New York Genome Center; http://satijalab.org/seurat/

Scanpy — Fabian Theis, Helmholtz University; https://scanpy.readthedocs.io/en/stable/ J. Crai g Venter’
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https://www.nature.com/articles/s41598-019-41695-z
https://doi.org/10.1038/nmeth.4236
http://satijalab.org/seurat/
https://scanpy.readthedocs.io/en/stable/

Principal Component Analysis (PCA)

* Linear transformation for combining difference between
data objects across all N original dimensions

» Convert originally correlated variables into linearly
uncorrelated variables (PC: principal components) by:
Eigenvalue decomposition of data covariance matrix, or !
Single value decomposition of data matrix
* The goal 1s to use a subset of transformed dimensions to
represent the difference across all original dimensions for
dimensionality reduction

* Generated dimensions (PCs) lose the meaning of the
original variables

w1

* May not be able to identify small data clusters, depending o
on the relative scaling of the original variables

J. Craig Venter
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Clustering using Louvain

15TPASS

1. Build an unweighted k nearest neighbor (KNN)

graph y
2. Add weights, and obtain a shared nearest neighbor
(SNN) graph 2
3. Iterate to optimize modularity 20PASS
1 Y , ‘ 1 : 2% . 2%
IO, e
Effect of resolution parameter
louvain_0.4 louvain_0.6 louvain_1.0
3 o SR L, (T T
. ¥ ) W J. Craig Venter’
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t-Distributed Stochastic Neighbor Embedding (t-SNE)

Nonlinear transformation
Goals is to plot similar data objects nearby, and dissimilar objects distant by:
Constructing t-distributed probability model over pairs of high-dimensional data objects
Minimizing Kullback-Leibler (KL) distance between the high-D distribution and the low-D distribution
Generated dimensions lose the meaning of the original variables
Distance between objects on transformed low-D space does not correspond to (in a ratio to) original variance in high-D space
Small data clusters can be identified, depending on their similarity with the other data objects

Requires setting at least two algorithm parameters that usually change the 2D layout significantly

UMAP 2
-
o
)
Hs
N
-
8
Y
*

TSNE 2

}5 / 26
) b TS
J
= J. Craig Venter
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scRINA-seq Processing & Analysis Workflow

Dimensionality Reduction &
Clustering

Adaptor and
Quality Trimming
Trimmomatic, FASTX,

Seurat
Scanpy

CellxGene

Doublet & QC cell
filtering

Dimensionality Reduction

Marker Gene Identification

& Visualization NS-Forest

Alignment Mappin
HISgAT2, RSEM, B%\E\’rtie

CellxMarkerGene

Cell Type Matching
FR-Match

Transcript/Gene
Asspmbly

CellxGene

J. Craig Venter
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Resources

* Publications
NS-Forest v1.0 - Aevermann B, et al. (2018) Human Molecular Genetics, 27(R1):R40-R47. PMID: 29590361
NS-Forest v2.0 - Aevermann B, et al. (2021) Genome Research, 31:1767-1780. PMID: 34088715
FR-Match v1.0 - Zhang Y, et al. (2021) Briefings in Bioinformatics, 22:bbaa339. PMID: 33249453
FR-Match v2.0 - https://www.biorxiv.org/content/10.1101/2021.10.17.464718v2
Cortical layer 1 cell types - Boldog E, et al. (2018) Nature Neuroscience, 21: 1185-1195. PMID: 30150662
MTG human cell types - Hodge RD, et al. (2019) Nature, 573:61-68. PMID: 31435019
M1 human, mouse, marmoset — Bakken T, et al. (2021) Nature, 598:111-119. PMID: 34616062

*  Source Code
NS-Forest source code is available at https://github.com/JCVenterlnstitute/NSForest
FR-Match source code is available at https://github.com/JCVenterlnstitute/FRmatch

*  Protocols

NS-Forest protocol is available at https://www.protocols.io/view/ns-forest-version-2-un7evhn
FR-Match protocol is available at https://www.protocols.io/view/fr-match-cell-type-matching-for-scrnaseq-data-bmyfk7tn

*  Ontology
PCL is available through the BioPortal - https://bioportal.bioontology.org/ontologies/PCL

J. Craig Venter
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