
NGS theory: Transcriptomics, RNAseq, scRNAseq

Richard H. Scheuermann, PhD
J. Craig Venter Institute



J Taylor, Oxford Univ.

Transcriptome

• The population of mRNAs expressed by a genome at any given time (Abbott, 1999)
• The complete collection of transcribed elements of the genome. (Affymetrix, 2004)
• mRNAs: 35,913 transcripts in human  (including alternative spliced variants) 
• Non-coding RNAs

¡ tRNAs (497 genes)
¡ rRNAs (243 genes)
¡ snmRNAs (small non-messenger RNAs)
¡ microRNAs and siRNAs (small interfering RNAs)
¡ snRNAs (small nuclear RNAs)
¡ Pseudogenes (~ 2,000)



Transcriptomics

• The study of the characteristics and regulation of the functional RNA 
transcript population of cells and organisms under specified conditions
¡ The population of functional RNA transcripts
¡ The mechanisms that regulate their production
¡ The dynamics and variability of the transcriptome (time, cell type, genotype, 

external stimuli)



Transcriptomics and Virology

• Study the dynamics of viral gene expression during an infection cycle
• Compare virus gene expression between acute infection, latency, and re-activation
• Get an understanding of the host genes and pathways that respond to viral infection

¡ Pathways required for viral replication (candidate drug targets)
¡ Host response pathways (possible determinants of virulence)

• Help elucidate the function of unknown genes based on their temporal and spatial 
patterns (guilt by association)

• Proxy for changes in the proteome and metabolome
• Molecular biomarkers of disease



Outline

• A very brief history of transcriptomics, including gene 
expression microarray technologies

• RNA sequencing for transcriptomics analysis
• Single cell RNA sequencing



Early Evolution of Transcriptomics Technologies

• Northern blot – labor intensive, large amount of 
material, use of radioactivity, one gene at a time

• Macroarrays – more genes, still radioactivity

• qRT-PCR – no radioactivity, but still low 
throughput

• Microarrays – semi-quantitative, informatics 
requirements



Advantages and Disadvantages of Microarrays

• Advantages
¡ Much higher throughput
¡ Multiplex transcriptome-level analysis

• Disadvantages
¡ Relatively high experimental variability
¡ Sensitive to alternative splicing ambiguities
¡ Difficult to determine absolute transcript numbers
¡ No information about target size is obtained, which can be helpful in recognizing cross-

hybridization to non-specific or related targets
¡ Only one or two samples can be analyzed at a time
¡ Requires prior knowledge of transcript sequences to design probe sets
¡ Doesn’t assess allele-specific expression



RNA SEQUENCING FOR TRANSCRIPTOMICS
ANALYSIS



RNA-seq Advantages

• Genome-wide gene expression quantification
¡ More accurate
¡ Unbiased

• Essentially no noise or non-specific signal
• Mapping genes and exon boundaries

¡ Single base resolution
¡ Alternative splicing detection 

• Novel transcripts detected
• But data is voluminous and complex

¡ Need scalable, fast and mathematically principled analysis software and LOTS of computing 
resources



StringTie



Wet lab



Pre-processing

StringTie



Quality Control

• Quality assessment
¡ Evaluate read library quality to identify poor quality samples and 

contaminants
– Phred scoring
– QC content 

¡ Determine if primer and adapter sequences are present
¡ Presence of other over-represented sequences (e.g., rRNA)
¡ Software - FastQC, SAMStat, samtools, MISO



fastQC examples and criteria

• High quality along the entire read length
• Mean sequence quality curve mostly unimodal above Phred score of 30
• GC count mostly unimodal around 40-43% GC
• Few overrepresented sequences
• Few Kmer sequences with Obs/Exp Overall >10, except polyT early

Pass

Fail



Adaptor & Quality Trimming

• Trimmomatic
¡ Performs both primer/adapter and quality trimming 
¡ Paired End (PE) aware: writes unpaired reads to separate file
¡ User provided adapter/primer .fasta file 

• Example parameters for quality trimming
¡ Trim leading and trailing bases by phred score (e.g., <3)
¡ Quality trimming by user-specified base pair sliding window (e.g., 4 bp) and 

average phred score (e.g., <12)
¡ Remove reads shorter than user-specified length (e.g., 60 bp)

Bolger  Anthony, Lohse Marc, Usadel Bjoern. “Trimmomatic: a flexible trimmer for Illumina sequence 
data” bioinformatics Vol. 30 no. 15 2014, pages 2114–2120 doi:10.1093/bioinformatics/btu170. 



Abundance
analysis

StringTie



Tuxedo RNA-seq Pipeline



Current “Tuxedo” RNA-seq Pipeline



Current “Tuxedo” RNA-seq Pipeline



HISAT2

• Strategy: HISAT2 uses a genome indexing scheme in order to 
make the alignment process more efficient and more accurate

¡ A genome index is a type of preprocessing that compresses the size of the text 
and makes queries fast: “Like the index at the end of a book, an index of a 
large DNA sequence allows one to rapidly find shorter sequences embedded 
within it.”

¡ HISAT2 is based on a Hierarchical Graph FM * index (HGFM). It generates 
one global GFM index but also many local indexes (each index representing a 
genomic region of 56 Kbp, with 55,000 indexes needed to cover human 
genome).  At an index size of 56 Kbp, over 90% of introns are contained 
within the same index.

¡ The algorithm first searches the global index for a given read to find a region 
of interest, then loads the local index for that region and aligns the read. This 
gives significant efficiency boost, but also increases accuracy as the alignment 
process only attempts to align the potentially spliced reads within the context 
of the small index as opposed to the whole genome.  

*Burrows-Wheeler transform and the Ferragina-Manzini (FM) index - https://en.wikipedia.org/wiki/FM-index
** Figure adapted from “Kim D, Langmead B and Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 2015” supplemental

Gene model

Global search

Local alignment

Reads mapped 
to original transcript

https://en.wikipedia.org/wiki/FM-index
http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.3317.html
http://www.nature.com/nmeth


Current “Tuxedo” RNA-seq Pipeline



StringTie 

• Strategy: StringTie uses a graph-based 
approach called network flow

¡ 1. pulls in a cluster of reads for a region given 
by the alignment.

¡ 2. Builds a splice graph of all isoforms for a 
given gene based on the annotation provided. 

¡ 3. Estimates heaviest flow using reads aligned 
to exons (nodes) and for that transcript a flow 
network is built.

¡ 4. From the flow network, the abundance of 
that transcript is then estimated by maximal 
flow. These assembled reads are then removed.

¡ 5. Process iterates until all reads are assigned to 
a transcript.

Pertea, M., Pertea, G., Antonescu, C. et al. StringTie enables 
improved reconstruction of a transcriptome from RNA-seq 
reads. Nat Biotechnol 33, 290–295 (2015).



StringTie optional input  - GTF

https://www.gencodegenes.org/pages/data_format.html



Additional information



Example GTF



StringTie
output - GTF

http://ccb.jhu.edu/software/stringtie/index.shtml?t=manual



RPKM Normalization

.4



Alternative Normalized Counts

RPKM
• Reads per kilobase per million normalizes the raw count by transcript length and sequencing 

depth.
• RPKM = (CDS read count * 109) / (CDS length * total mapped read count)
FPKM
• Same as RPKM except if the data is paired then only one of the mates is counted, i.e., fragments 

are counted rather than reads
TPM
• Transcripts per million (as proposed by Wagner et al 2012) is a modification of RPKM designed 

to be consistent across samples. It is normalized by total transcript count instead of read count in 
addition to average read length.

• TPM = (CDS read count * mean read length * 106) / (CDS length * total transcript count)



DE and
functional
analysis

StringTie



DE and
functional
analysis

reads_per_transcript = coverage * transcript_len / read_len

StringTie

prepDE.py



DEseq2

• Characteristics of RNAseq data
¡ Non-normal distribution of expression values
¡ Discrete rather than continuous
¡ Dependence of variance on the mean 

(overdispersion)
¡ Small sample sizes

• DEseq2
¡ Model expression as a negative binomial distribution
¡ Corrects dispersion estimates that are too low 

through modeling of the dependence of the 
dispersion on the average expression strength over 
all samples

Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with 
DESeq2. Genome Biol 15, 550 (2014). https://doi.org/10.1186/s13059-014-0550-8



Functional enrichment analyses

• GO Enrichment

• GO-BAYES

• GSEA

• Enrichr



Pathway Enrichment Results in DAVID



Highlight factors in KEGG Pathways



Virology and Transcriptomics

• Study the dynamics of viral gene expression during and infection cycle
• Compare virus gene expression between acute infection, latency, and re-activation
• Get an understanding of the genes and pathways that respond to viral infection

¡ Pathways required for viral replication (candidate drug targets)
¡ Host response pathways (possible determinants of virulence)

• Help elucidate the function of unknown genes based on their temporal and spatial 
patterns (guilt by association)

• Proxy for changes in the proteome and metabolome
• Molecular biomarkers of disease



SINGLE CELL RNA-SEQ



• Cells are the fundamental functional 
units of multicellular organisms

• Different cell types play different 
physiological roles in the body

• Cell identity and function (phenotype) 
is dictated by the subset of 
genes/proteins expressed

• Abnormalities in the expressed 
genome (disorders) form the physical 
basis of disease

• Understanding normal and abnormal 
cellular phenotypes is key for 
diagnosing disease and for identifying 
therapeutic targets

Bruce Wetzel & Harry Schaefer, National Cancer Institute
http://en.wikipedia.org/wiki/Image:SEM_blood_cells.jpg

Single Cell Profiling

• Transcriptional profiling of bulk 
samples obscures the cellular 
complexity of tissues 

• Single cell RNA sequencing 
allows us to quantify cellular 
phenotypes in an unbiased fashion, 
enabling the evaluation of both 
known and novel cell subsets in 
tissue samples

• Explainable Artificial Intelligence 
has emerged as a valuable tool to 
characterize this complexity



Smart-seq2
• Poly-A hybridization with 30nt polyT and 

25nt 5' anchor sequence 
• RT adding untemplated C 
• Template switching with TSO
• Locked nucleic acid binds to untemplated C 
• RT switches template 
• Preamplification / cleanup 
• DNA fragmentation and adapter ligation 

together 
• Gap repair, enrich, purify 

Picelli S, (2013) Nat Methods 10:1096-8.



Smart-Seq2
Frozen cortical tissue slab 350 µm sections

Nissl stained Sort

• Deposit single nuclei 
into 2µl Triton, 
ERCC, RNase-In

• Freeze in 
EtOH/dry ice

• Store @-80°C

• Add dNTPs 
& oligo-dT

• Lyse at 72°C 
for 3 min

• SmartSeq2 reverse 
transcription

• Biotin-TSO, DTT 
& betaine

• ISPCR

• 18 – 21 
cycles

96 or 
384 well

• Bead 
cleanup

• Quality 
control

• Picogreen
• Bioanalyzer
• Taqman – ERCC & ACTB

• Nextera®

XT library

• 96 or 384 sample 
bar codes

• Bead 
cleanup

• Picogreen
• Library 

pooling

• NextSeq®

500

• 2 x 150 
paired-end



10X Genomics



Smart-seq vs 10X

characteristics Smart-seq 10X

Genes detected 4000 - 6000 1000 - 2000

Transcript structure Full length transcripts 3’ or 5’ end only

Alternative splicing Yes No

PCR amplification bias Yes No (UMI)

Throughput 100-1000’s 10,000

Labor intensive Yes No

Cost ~$30/cell ~$1/cell



scRNA-seq Processing & Analysis Workflow
Raw NGS Reads

FastQ

Alignment Mapping
HISAT2, RSEM, Bowtie2

Aligned Sequences
SAM/BAM

Reference Sequence
Genome or Transcriptome

Transcript/Gene 
Assembly

Stringtie, RSEM

Adaptor and 
Quality Trimming
Trimmomatic, FASTX, 

Cutadapt

CellxGene
Expression Matrix

txt

Dimensionality Reduction & 
Clustering

PCA + SC3, Louvain, Leiden 

Marker Gene Identification
NS-Forest

CellxGene
Expression Matrix + 
Cluster membership

Dimensionality Reduction 
& Visualization
tSNE, UMAP 

CellxMarkerGene
Expression Matrix + 
Cluster membership

Cell Type Matching
FR-Match

Matched cell types 
between experiments

Seurat
Scanpy

Doublet & QC cell 
filtering

DoubletFinder, %mito



Dimensionality Reduction, Unsupervised Clustering and Visualization

• Strategy: using cell by gene expression values, perform PCA, unsupervised clustering and visualization in 
projected space

¡ Unsupervised clustering
– Louvain – graph-based community detection algorithm; Vincent Blondel, University of Louvain; J. Stat. Mech. 

(2008) P10008
– Leiden – improvement to Louvain to ensure that all communities are guaranteed to be connected; Vincent Traag, 

Leiden University; https://www.nature.com/articles/s41598-019-41695-z
– SC3 - unsupervised consensus clustering using multiple distance metrics, and dimensionality reduction methods for a 

user defined range of k (clusters); Martin Hemberg, Wellcome Trust Sanger Institute; 
https://doi.org/10.1038/nmeth.4236.

¡ Visualization in projected space
– tSNE - van der Maaten, L.J.P.; Hinton, G.E. (Nov 2008). "Visualizing Data Using t-SNE" (PDF). Journal of Machine 

Learning Research. 9: 2579–2605.
– UMAP - McInnes, Leland; Healy, John; Melville, James (2018-12-07). "Uniform manifold approximation and 

projection for dimension reduction". arXiv:1802.03426.

¡ Platforms
– Seurat  - Rahul Satija, New York Genome Center; http://satijalab.org/seurat/
– Scanpy – Fabian Theis, Helmholtz University; https://scanpy.readthedocs.io/en/stable/

https://www.nature.com/articles/s41598-019-41695-z
https://doi.org/10.1038/nmeth.4236
http://satijalab.org/seurat/
https://scanpy.readthedocs.io/en/stable/


Principal Component Analysis (PCA)

• Linear transformation for combining difference between 
data objects across all N original dimensions

• Convert originally correlated variables into linearly 
uncorrelated variables (PC: principal components) by:

¡ Eigenvalue decomposition of data covariance matrix, or
¡ Single value decomposition of data matrix

• The goal is to use a subset of transformed dimensions to 
represent the difference across all original dimensions for 
dimensionality reduction

• Generated dimensions (PCs) lose the meaning of the 
original variables

• May not be able to identify small data clusters, depending 
on the relative scaling of the original variables



Clustering using Louvain

1. Build an unweighted k nearest neighbor (KNN) 
graph

2. Add weights, and obtain a shared nearest neighbor 
(SNN) graph

3. Iterate to optimize modularity

Effect of resolution parameter



t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Nonlinear transformation
• Goals is to plot similar data objects nearby, and dissimilar objects distant by:

¡ Constructing t-distributed probability model over pairs of high-dimensional data objects
¡ Minimizing Kullback-Leibler (KL) distance between the high-D distribution and the low-D distribution

• Generated dimensions lose the meaning of the original variables
• Distance between objects on transformed low-D space does not correspond to (in a ratio to) original variance in high-D space
• Small data clusters can be identified, depending on their similarity with the other data objects
• Requires setting at least two algorithm parameters that usually change the 2D layout significantly



scRNA-seq Processing & Analysis Workflow
Raw NGS Reads

FastQ

Alignment Mapping
HISAT2, RSEM, Bowtie2

Aligned Sequences
SAM/BAM

Reference Sequence
Genome or Transcriptome

Transcript/Gene 
Assembly

Stringtie, RSEM

Adaptor and 
Quality Trimming
Trimmomatic, FASTX, 

Cutadapt

CellxGene
Expression Matrix

txt

Dimensionality Reduction & 
Clustering

PCA + SC3, Louvain, Leiden 

Marker Gene Identification
NS-Forest

CellxGene
Expression Matrix + 
Cluster membership

Dimensionality Reduction 
& Visualization
tSNE, UMAP 

CellxMarkerGene
Expression Matrix + 
Cluster membership

Cell Type Matching
FR-Match

Matched cell types 
between experiments

Seurat
Scanpy

Doublet & QC cell 
filtering

DoubletFinder, %mito



Resources

• Publications
¡ NS-Forest v1.0 - Aevermann B, et al. (2018) Human Molecular Genetics, 27(R1):R40-R47. PMID: 29590361
¡ NS-Forest v2.0 - Aevermann B, et al. (2021) Genome Research, 31:1767-1780. PMID: 34088715
¡ FR-Match v1.0 - Zhang Y, et al. (2021) Briefings in Bioinformatics, 22:bbaa339. PMID: 33249453 
¡ FR-Match v2.0 - https://www.biorxiv.org/content/10.1101/2021.10.17.464718v2
¡ Cortical layer 1 cell types - Boldog E, et al. (2018) Nature Neuroscience, 21: 1185-1195. PMID: 30150662
¡ MTG human cell types - Hodge RD, et al. (2019) Nature, 573:61-68. PMID: 31435019
¡ M1 human, mouse, marmoset – Bakken T, et al. (2021) Nature, 598:111-119. PMID: 34616062

• Source Code
¡ NS-Forest source code is available at  https://github.com/JCVenterInstitute/NSForest
¡ FR-Match source code is available at https://github.com/JCVenterInstitute/FRmatch

• Protocols
¡ NS-Forest protocol is available at https://www.protocols.io/view/ns-forest-version-2-un7evhn
¡ FR-Match protocol is available at https://www.protocols.io/view/fr-match-cell-type-matching-for-scrnaseq-data-bmyfk7tn

• Ontology
¡ PCL is available through the BioPortal - https://bioportal.bioontology.org/ontologies/PCL

https://www.biorxiv.org/content/10.1101/2021.10.17.464718v2
https://github.com/JCVenterInstitute/NSForest
https://github.com/JCVenterInstitute/FRmatch
https://www.protocols.io/view/ns-forest-version-2-un7evhn
https://www.protocols.io/view/fr-match-cell-type-matching-for-scrnaseq-data-bmyfk7tn
https://bioportal.bioontology.org/ontologies/PCL

