# **BV-BRC Test Report**

# A5. Service – Comprehensive Genome Analysis - Bacteria

| Item to test      | Comprehensive Genome Analysis Service using bacterial reads sets and contigs                                                                                                                                      |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| URL               | https://www.bv-brc.org/app/ComprehensiveGenomeAnalysis                                                                                                                                                            |
| Prerequisite<br>s | Bacterial read files and contig files in the workspace                                                                                                                                                            |
| References        | https://www.bv-brc.org/docs/quick_references/services/<br>comprehensive_genome_analysis_service.html<br>https://www.bv-brc.org/docs/tutorial/comprehensive_genome_analysis/<br>comprehensive_genome_analysis.html |
| Tester(s)         | Rebecca Wattam, Maulik Shukla                                                                                                                                                                                     |
| Test date         | 21-Apr-2022 (follow-up from original test)                                                                                                                                                                        |
| Test result       | Passed                                                                                                                                                                                                            |

## Overview

- Test the Comprehensive Genome Analysis service using exemplar bacterial datasets.
- Test input options, i.e., single end or paired end read files from workspace, sear sets using SRA accessions, or assembled contigs from workspace.
- Test assembly strategies, i.e., Auto, Unicycler, SPAdes, Canu, MetaSPAdes, and PlasmidSPAdes.
- For each job submitted, verify successful completion of the job, availability of the output files in the workspace, and quality of the assembly and annotations by comparing them to the same or similar public genome.
- Verify successful integration of the genome in BV-BRC by reviewing genome overview pages and other genome level tabs.
- Review the quality and accuracy of the comprehensive genome report by comparing the summary stats with those available on the genome overview page.

## Test Data

| Dataset                             | Rational            | Input<br>Format                                | Input                                      |
|-------------------------------------|---------------------|------------------------------------------------|--------------------------------------------|
| Buchnera aphidicola -<br>SRR4240359 | Workshop<br>example | SRA<br>accession,<br>read files,<br>fasta file | SRR4240359                                 |
| Escherichia coli -<br>SRR3584989    | Workshop<br>example | SRA<br>accession,<br>read files                | SRR3584989                                 |
| Mycobacterium tuberculosis<br>H37Rv | Reference genome    | FASTA file                                     | Mycobacterium_tuberculosis_H37<br>Rv.fasta |
| Escherichia coli MG1655             | Reference<br>genome | FASTA file                                     | Escherichia_coli_MG1655.fasta              |
| Brucella suis 1330                  | Reference           | FASTA file                                     | Brucella_suis_1330.fasta                   |

|                       | genome   |            |                               |
|-----------------------|----------|------------|-------------------------------|
| Staphylococcus aureus | Workshop | FASTA file | Staphylococcus_aureus_VB4283. |
| VB4283                | example  |            | fna                           |

 All test datasets and corresponding job results are available in the following public workspace: <a href="https://www.bv-brc.org/workspace/BVBRC@patricbrc.org/BVBRC%20Tests/Comprehensive%20Genome%20Analysis">https://www.bv-brc.org/workspace/BVBRC@patricbrc.org/BVBRC%20Tests/Comprehensive%20Genome%20Analysis</a>

## **Test Results**

- All comprehensive genome analysis jobs completed successfully, without any errors.
- All jobs resulted in expected output files in corresponding job output directory, providing comprehensive analysis report in HTML format, assembled contigs in fasta format, and genome annotations in expected file formats.
- The genome report was informative and provided a concise summary of the assembly, annotations, circular genome view, subsystem pie chart, summary of specialty genes, list of AMR genes, phylogenetic tree of closest reference genomes, and list of references.
- For each of the genomes, the total length of the assembled contigs and number of features were as expected when compared to those in corresponding public genomes in PATRIC.
- All test datasets and corresponding job results are available in the following public workspace: <u>https://www.bv-brc.org/workspace/BVBRC@patricbrc.org/BVBRC%20Tests/Comprehensive</u> <u>%20Genome%20Analysis</u>
- Below are some sample of screenshots showing successful completion of the jobs, availability of the result files in the workspace, excerpts of the comprehensive genome repot.

| • | Input data | files and | complete | ed analysis | s jobs ii | n the | workspace. |
|---|------------|-----------|----------|-------------|-----------|-------|------------|
|---|------------|-----------|----------|-------------|-----------|-------|------------|

|             | Name                                             | Size     | Owner | Members | Created          | - |
|-------------|--------------------------------------------------|----------|-------|---------|------------------|---|
| t           | Parent folder                                    |          |       | -       |                  |   |
| T           | Brucella_suis_1330.fasta                         | 3.4 MB   | me    | Public  | 4/20/22, 4:07 PM |   |
| z           | Buchnera aphidicola strain Tuc7_SRR4240359.fasta | 671.1 kB | me    | Public  | 4/20/22, 4:07 PM |   |
| *           | Escherichia_coli_MG1655.fasta                    | 4.7 MB   | me    | Public  | 4/20/22, 4:07 PM |   |
| T.          | Escherichia_coli_MRSN388634.fasta                | 5.3 MB   | me    | Public  | 4/20/22, 4:07 PM |   |
| L           | Mycobacterium_tuberculosis_H37Rv.fasta           | 4.5 MB   | me    | Public  | 4/20/22, 4:07 PM |   |
| T.          | Staphylococcus_aureus_VB4283.fna                 | 2.9 MB   | me    | Public  | 4/20/22, 4:07 PM |   |
| 163         | Brucella suis 1330                               | 20.2 kB  | me    | Public  | 4/20/22, 4:18 PM |   |
| 689         | Escherichia coli MG1655                          | 20.4 kB  | me    | Public  | 4/20/22, 4:20 PM |   |
| 163         | Escherichia coli MRSN388634                      | 21.2 kB  | me    | Public  | 4/20/22, 4:21 PM |   |
| 183         | Staphylococcus aureus VB4283                     | 20.6 kB  | me    | Public  | 4/20/22, 4:22 PM |   |
| 163         | Buchnera aphidicola Tuc7                         | 20.5 kB  | me    | Public  | 4/20/22, 4:24 PM |   |
| <b> 63</b>  | Mycobacterium tuberculosis H37Rv                 | 20.8 kB  | me    | Public  | 4/20/22, 4:24 PM |   |
|             | SRR7796591_1.fastq.gz                            | 1.1 GB   | me    | Public  | 4/20/22, 4:44 PM |   |
|             | SRR7796591_2.fastq.gz                            | 1.2 GB   | me    | Public  | 4/20/22, 4:44 PM |   |
|             | SRR3584989_1.fastq                               | 493.2 MB | me    | Public  | 4/20/22, 4:45 PM |   |
|             | SRR3584989_2.fastq                               | 495.8 MB | me    | Public  | 4/20/22, 4:45 PM |   |
| 189         | Buchnera aphidicola SRR4240359                   | 23.6 kB  | me    | Public  | 4/21/22, 3:06 AM |   |
| <b> 6</b> 3 | Escherichia coli SRR3584989                      | 24.1 kB  | me    | Public  | 4/21/22, 3:26 AM |   |
| 163         | Escherichia coli SRR3584989 - read files         | 25.3 kB  | me    | Public  | 4/21/22, 4:07 AM |   |
| <b> 6</b> 3 | Buchnera aphidicola Tuc7 - Canu                  | 13.6 kB  | me    | Public  | 4/21/22, 4:15 AM |   |
| 183         | Buchnera aphidicola Tuc7 - MetaSpades            | 13.9 kB  | me    | Public  | 4/21/22, 4:16 AM |   |
| <b> </b> 83 | Buchnera aphidicola Tuc7 - Spades                | 24.0 kB  | me    | Public  | 4/21/22, 4:31 AM |   |
| 183         | Buchnera aphidicola Tuc7 - Auto                  | 23.6 kB  | me    | Public  | 4/21/22, 4:34 AM |   |
| <b> </b> 83 | Buchnera aphidicola Tuc7 - PlasmidSpades         | 22.7 kB  | me    | Public  | 4/21/22, 4:50 AM |   |
| 183         | Buchnera aphidicola Tuc7 - Unicycler             | 23.9 kB  | me    | Public  | 4/21/22, 5:11 AM |   |
|             |                                                  |          |       |         |                  |   |

### • Genomes successfully assembled, annotated, and integrated into the database.

| Genome Name                              | <ul> <li>Contigs</li> </ul> | Size    | GC Content | Contig L50 | Contig N50 | CDS  | Date Inserted |  |
|------------------------------------------|-----------------------------|---------|------------|------------|------------|------|---------------|--|
| Brucella suis 1330                       | 2                           | 3315175 | 57.251305  | 1          | 2107794    | 3270 | 4/20/22       |  |
| Buchnera aphidicola SRR4240359           | 5                           | 655300  | 26.353884  | 1          | 428696     | 602  | 4/21/22       |  |
| Buchnera aphidicola Tuc7                 | 17                          | 659501  | 26.388435  | 1          | 481804     | 605  | 4/20/22       |  |
| Buchnera aphidicola Tuc7 - Auto          | 5                           | 655300  | 26.353884  | 1          | 428696     | 602  | 4/21/22       |  |
| Buchnera aphidicola Tuc7 - PlasmidSpades | 1                           | 3691    | 30.750475  | 1          | 3691       | 8    | 4/21/22       |  |
| Buchnera aphidicola Tuc7 - Spades        | 515                         | 915748  | 28.45641   | 1          | 481805     | 870  | 4/21/22       |  |
| Buchnera aphidicola Tuc7 - Unicycler     | 5                           | 655300  | 26.353884  | 1          | 428696     | 602  | 4/21/22       |  |
| Escherichia coli MG1655                  | 1                           | 4639675 | 50.7897    | 1          | 4639675    | 4506 | 4/20/22       |  |
| Escherichia coli MRSN388634              | 84                          | 5211994 | 50.32832   | 7          | 208790     | 5133 | 4/20/22       |  |
| Escherichia coli SRR3584989              | 100                         | 5183531 | 50.32685   | 9          | 170302     | 5094 | 4/21/22       |  |
| Escherichia coli SRR3584989 - read files | 100                         | 5183531 | 50.32685   | 9          | 170302     | 5094 | 4/21/22       |  |
| Mycobacterium tuberculosis H37Rv         | 1                           | 4411532 | 65.61412   | 1          | 4411532    | 4264 | 4/20/22       |  |
| Staphylococcus aureus VB4283             | 78                          | 2796422 | 32.695816  | 9          | 105363     | 2714 | 4/20/22       |  |

### • Output files in job result directory.

| <b>BVBRC / BVBRC Tests</b> | s / Comprehensive Genome Analys | sis / Buchnera aphidicola Tuc7 (13 items) |  |
|----------------------------|---------------------------------|-------------------------------------------|--|
|----------------------------|---------------------------------|-------------------------------------------|--|

| ComprehensiveGenor | eAnalysis Job Result |  |
|--------------------|----------------------|--|
| Job ID             | 7419868              |  |
| Start time         | 4/20/22, 4:11 PM     |  |
| End time           | 4/20/22, 4:24 PM     |  |
| Run time           | 12m51s               |  |
| Parameters         |                      |  |

task\_data: [object Object]

|             | Name                                              | • | Size     | Owner | Members | Created          |
|-------------|---------------------------------------------------|---|----------|-------|---------|------------------|
| t           | Parent folder                                     |   |          |       | -       |                  |
|             | FullGenomeReport.html                             |   | 274.4 kB | me    | Public  | 4/20/22, 4:23 PM |
|             | annotated.genome                                  |   | 2.8 MB   | me    | Public  | 4/20/22, 4:23 PM |
| <b> </b> 83 | annotation                                        |   | 32.8 kB  | me    | Public  | 4/20/22, 4:13 PM |
|             | circos.png                                        |   | 650.9 kB | me    | Public  | 4/20/22, 4:24 PM |
|             | circos.svg                                        |   | 238.6 kB | me    | Public  | 4/20/22, 4:24 PM |
|             | codonTree.svg                                     |   | 8.8 kB   | me    | Public  | 4/20/22, 4:24 PM |
|             | codontree.genesPerGenome.txt                      |   | 261 B    | me    | Public  | 4/20/22, 4:24 PM |
|             | codontree.homologAlignmentStats.txt               |   | 1.7 kB   | me    | Public  | 4/20/22, 4:24 PM |
|             | codontree.homologsAndGenesIncludedInAlignment.txt |   | 2.6 kB   | me    | Public  | 4/20/22, 4:24 PM |
|             | codontree.nex                                     |   | 5.2 kB   | me    | Public  | 4/20/22, 4:24 PM |
|             | codontree_treeWithGenomelds.nwk                   |   | 583 B    | me    | Public  | 4/20/22, 4:24 PM |
|             | subsystem_colors.json                             |   | 320 B    | me    | Public  | 4/20/22, 4:24 PM |
|             | tree_ingroup.txt                                  |   | 97 B     | me    | Public  | 4/20/22, 4:24 PM |

• Comprehensive genome analysis report.

#### Summary

An assembled genome for Buchnera aphidicola Tuc7 was submitted to the comprehensive genome analysis service at PATRIC<sup>[1]</sup>. Based on the annotation statistics and a comparison to other genomes in PATRIC within this same species, this genome appears to be of Good quality. Details of the analysis, including genes of interest (Specialty Genes), a functional categorization (Subsystems), and a phylogenetic tree (Phylogenetic Analysis) are provided below.

#### Genome Assembly

An assembled genome was submitted to the Comprehensive Genome Analysis service. This assembled genome had 17 contigs, with the total length of 659,501 bp and an average G+C content of 26.33% (Table 1).

| Contigs       | 17         |
|---------------|------------|
| GC Content    | 26.39      |
| Plasmids      | 0          |
| Contig L50    | 1          |
| Genome Length | 659,501 bp |
| Contig N50    | 481,804    |
| Chromosomes   | 0          |

#### Genome Annotation

The Buchnera aphidicola Tuc7 genome was annotated using RAST tool kit (RASTtk)<sup>[2]</sup> and assigned a unique genome identifier of 91023. This genome is in the superkingdom Bacteria and was annotated using genetic code 11. The taxonomy of this genome is:

cellular organisms > Bacteria > Proteobacteria > Gammaproteobacteria > Enterobacterales > Erwiniaceae > Buchnera > Buchnera aphidicola

This genome has 605 protein coding sequences (CDS), 32 transfer RNA (tRNA) genes, and 3 ribosomal RNA (rRNA) genes. The annotated features are summarized in Table 2.

| Table 2. Annotated Genome Features |                            |
|------------------------------------|----------------------------|
| CDS                                | 605                        |
| tRNA                               | 32                         |
| rRNA                               | 3                          |
| Partial CDS                        | 0                          |
| Miscellaneous RNA                  | 0                          |
| Repeat Regions                     | 0                          |
| Job ID                             | annotation_4952            |
| Job Started                        | April 20th 2022, 9:11:11pm |
| Job Completed                      | April 20th 2022, 9:13:53pm |
| Total Time                         | 2 minutes and 42 seconds   |

The annotation included 26 hypothetical proteins and 579 proteins with functional assignments (Table 3). The proteins with functional assignments included 318 proteins with Enzyme Commission (EC) numbers<sup>[2]</sup>, 267 with Gene Ontology (GO) assignments<sup>[6]</sup>, and 241 proteins that were mapped to KEGG pathways<sup>[5]</sup>, PATRIC annotation includes two types of protein families<sup>[6]</sup>, and this genome has 597 proteins that belong to the genus-specific protein families (PLFams) for , and 600 proteins that belong to the cross-genus protein families (PGFams).

| Table 3. Protein Features                                      |     |
|----------------------------------------------------------------|-----|
| Hypothetical proteins                                          | 26  |
| Proteins with functional assignments                           | 579 |
| Proteins with EC number assignments                            | 318 |
| Proteins with GO assignments                                   | 267 |
| Proteins with Pathway assignments                              | 241 |
| Proteins with PATRIC genus-specific family (PLfam) assignments | 597 |
| Proteins with PATRIC cross-genus family (PGfam) assignments    | 600 |

A circular graphical display of the distribution of the genome annotations is provided (Figure 1). This includes, from outer to inner rings, the contigs, CDS on the forward strand, CDS on the reverse strand, RNA genes, CDS with homology to know virulence factors, GC content and GC skew. The colors of the CDS on the forward and reverse strand indicate the subsystem that these genes belong to (see Subsystems below).

#### Figure 1



#### Subsystem Analysis

A subsystem is a set of proteins that together implement a specific biological process or structural complex<sup>[7]</sup> and PATRIC annotation includes an analysis of the subsystems unique to each genome. An overview of the subsystems for this genome is provided in Figure 2.

Figure 2



Subsystem (Subsystems, Genes) M ETABOLISM (41, 199) PROTEIN PROCESSING (37, 178) STRESS RESPONSE, DEFENSE, VIRULENCE (18, 52) ENERGY (16, 94) DNA PROCESSING (11, 38) DNA PROCESSING (3, 16) CELLULAR PROCESSES (6, 36) CELLLENYELOPE (2, 3) MEMBRANE TRANSPORT (2, 3)

#### Specialty Genes

Many of the genes annotated in have homology to known transporters<sup>[8]</sup>, virulence factors<sup>[9](10]</sup>, drug targets<sup>[11](12]</sup>, and antibiotic resistance genes<sup>[13]</sup>. The number of genes and the specific source database where homology was found is provided (Table 4).

| Table 4. Specialty Genes |           |       |  |  |
|--------------------------|-----------|-------|--|--|
|                          | Source    | Genes |  |  |
| Antibiotic Resistance    | CARD      | 1     |  |  |
| Antibiotic Resistance    | PATRIC    | 17    |  |  |
| Drug Target              | DrugBank  | 11    |  |  |
| Drug Target              | TTD       | 1     |  |  |
| Transporter              | TCDB      | 3     |  |  |
| Virulence Factor         | PATRIC_VF | 3     |  |  |
| Virulence Factor         | Victors   | 4     |  |  |

#### Antimicrobial Resistance Genes

The Genome Annotation Service in PATRIC uses k-mer-based AMR genes detection method, which utilizes PATRIC's curated collection of representative AMR gene sequence variants<sup>[1]</sup> and assigns to each AMR gene functional annotation, broad mechanism of antibiotic resistance, drug class and, in some cases, specific antibiotic it confers resistance to. Please note, that the presence of AMR-related genes (even full length) in a given genome does not directly imply antibiotic resistant phenotype. It is important to consider specific AMR mechanisms and especially the absence/presence of SNP mutations conveying resistance. A summary of the AMR genes annotated in this genome and corresponding AMR mechanism is provided in Table 5.

| Table 5. Antimicrobial Resistance Genes                        |                                                                                                       |  |  |  |  |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|
| AMR Mechanism                                                  | Genes                                                                                                 |  |  |  |  |
| Antibiotic target in susceptible species                       | Ddl, dxr, EF-G, EF-Tu, folA, Dfr, gyrA, gyrB, inhA, fabl, Iso-tRNA, MurA, rho, rpoB, rpoC, S10p, S12p |  |  |  |  |
| Regulator modulating expression of antibiotic resistance genes | H-NS                                                                                                  |  |  |  |  |

#### **Phylogenetic Analysis**

The National Center for Biotechnology Information (NCBI) staff manually select and categorize reference and representative genomes, which they consider to be of high quality and importance to the research community. PATRIC provides the reference and representative genomes, and includes them in the phylogenetic analysis that is part of the Comprehensive Genome Analysis report. The closest reference and representative genomes to were identified by Mash/Mintash<sup>[10]</sup>. PATRIC global protein families (PGFans)<sup>[6]</sup> were selected from these genomes to determine the phylogenetic placement of this genome. The protein sequences from these families were aligned with MUSCLE<sup>[17]</sup>, and the nucleotides for each of those sequences were mapped to the protein alignment. The joint set of amino acid and nucleotide alignments were concatenated into a data matrix, and RaxML<sup>[10]</sup> was used to analyze this matrix, with fast bootstrapping<sup>[19]</sup> was used to generate the support values in the tree (Figure 3).

#### Figure 3



#### References

- 1. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, et al. 2017. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 45:D535-D542.
- 2. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, et al. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365.
- 3. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D. 2004. BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 32:D431-D433.
- 4. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT. 2000. Gene Ontology: tool for the unification of biology. Nature genetics 25:25.
- 5. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457-462.
- 6. Davis JJ, Gerdes S, Olsen GJ, Olson R, Pusch GD, Shukla M, Vonstein V, Wattam AR, Yoo H. 2016. PATtyFams: Protein Families for the Microbial Genomes in the PATRIC Database. Front Microbiol 7:118.
- 7. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R. 2005. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691-5702.
- 8. Saier Jr MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. 2015. The transporter classification database (TCDB): recent advances. Nucleic Acids Res 44:D372-D379.
- 9. Mao C, Abraham D, Wattam AR, Wilson MJ, Shukla M, Yoo HS, Sobral BW. 2015. Curation, integration and visualization of bacterial virulence factors in PATRIC. Bioinformatics 31:252-258.
- 10. Chen L, Zheng D, Liu B, Yang J, Jin Q. 2016. VFDB 2016: hierarchical and refined dataset for big data analysis-10 years on. Nucleic Acids Res 44:D694-D697.
- 11. Zhu F, Han B, Kumar P, Liu X, Ma X, Wei X, Huang L, Guo Y, Han L, Zheng C. 2009. Update of TTD: therapeutic target database. Nucleic Acids Res 38:D787-D791.
- 12. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, et al. 2014. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42:D1091-1097.
- 13. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, De Pascale G, Ejim L. 2013. The comprehensive antibiotic resistance database. Antimicrobial agents and chemotherapy 57:3348-3357.
- 14. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, et al. 2017. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 45:0535-0542.
- 15. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM. 2016. Mash: fast genome and metagenome distance estimation using MinHash. Genome biology 17:132.
- 16. Davis JJ, Gerdes S, Olsen GJ, Olson R, Pusch GD, Shukla M, Vonstein V, Wattam AR, Yoo H. 2016. PATtyFams: Protein Families for the Microbial Genomes in the PATRIC Database. Front Microbiol 7:118
- 17. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792-1797.
- 18. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313.
- 19. Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAXML web servers. Systematic biology 57:758-771.

#### Fully integrated genome on the genome overview page.

Genome View Bacteria » Proteobacteria » Enterobacteria » Enterobacteria » Enterobacteria » Enterobacteria » Euchnera » Buchnera » B

| Buchnera aphidicola          | a Tuc7                                |    | enomic Features                                                |              | <u> </u> |                                                                                                                              |  |  |
|------------------------------|---------------------------------------|----|----------------------------------------------------------------|--------------|----------|------------------------------------------------------------------------------------------------------------------------------|--|--|
|                              |                                       |    |                                                                | PATRIC *     | RefSeq   | Services Add To Group Share GUIDE                                                                                            |  |  |
| Length: 659501bp, Contigs: 1 | 17                                    | C  | CDS                                                            | 605          | 0        | External Tools                                                                                                               |  |  |
| General Info                 |                                       | tF | RNA                                                            | 32           | 0        | BEI Resources                                                                                                                |  |  |
| Genome ID                    | 9.1023                                | ri | RNA                                                            | 3            | 0        | Recent PubMed Articles                                                                                                       |  |  |
| Genome Name                  | Buchnera aphidicola Tuc7              |    |                                                                |              |          | > 2022 May 6                                                                                                                 |  |  |
| Taxonomy Info                |                                       |    |                                                                |              |          | Elucidation of host and symbiont contributions to<br>peptidoglycan metabolism based on comparative genomic                   |  |  |
| Taxon ID                     | 9                                     |    |                                                                |              |          | of eight aphid subfamilies and their Buchnera.<br>Smith TE et al.                                                            |  |  |
| Superkingdom                 | Bacteria                              |    |                                                                |              |          | PLoS Genet                                                                                                                   |  |  |
| Phylum<br>Class              | Proteobacteria<br>Gammaproteobacteria | Pr | rotein Features                                                |              |          | + 2022 Mar 30                                                                                                                |  |  |
| Order                        | Enterobacterales                      |    |                                                                | PATRIC       | RefSeg   | Impact of heat stress on the fitness outcomes of symbiotic<br>infection in aphids: a meta-analysis.                          |  |  |
| Family                       | Erwiniaceae                           | н  | typothetical proteins                                          | 26           | 0        | Tougeron K and Iltis C<br>Proc Biol Sci                                                                                      |  |  |
| Genus                        | Buchnera                              |    | Proteins with functional assignments                           | 579          | 0        | > 2022 Feb 25                                                                                                                |  |  |
| Species                      |                                       |    | Proteins with EC number assignments                            | 318          | 0        | Bacterial Symbionts Confer Thermal Tolerance to Cereal<br>Aphids Rhopalosiphum padi and Sitobion avenae.<br>Majeed MZ et al. |  |  |
| Status                       |                                       |    | Proteins with GO assignments                                   | 267          | 0        |                                                                                                                              |  |  |
| Genome Status                | WGS                                   |    | •                                                              | 267          | 0        | Insects                                                                                                                      |  |  |
| Type Info                    |                                       |    | Proteins with Pathway assignments                              |              |          | · 2022                                                                                                                       |  |  |
|                              | None available                        |    | Proteins with Subsystem assignments                            | 408          | 0        | Insights Into the Species-Specific Microbiota of<br>Greenideinae (Hemiptera: Aphididae) With Evidence of                     |  |  |
| Database Cross Reference     |                                       |    | Proteins with PATRIC genus-specific family (PLfam) assignments | 597          | 0        | Phylosymbiosis.<br>Qin M et al.                                                                                              |  |  |
|                              | None available                        | P  | Proteins with PATRIC cross-genus family (PGfam) assignments    | 600          | 0        | Front Microbiol                                                                                                              |  |  |
| Sequence Info                |                                       | P  | Proteins with FIGfam assignments                               | 0            | 0        | > 2022 Mar                                                                                                                   |  |  |
|                              | None available                        |    |                                                                |              |          | Spatial distribution and community structure of microbiota<br>associated with cowpea aphid (Aphis craccivora Koch).          |  |  |
| Genome Statistics            |                                       |    |                                                                |              |          | Pawar MM et al.                                                                                                              |  |  |
| Contigs                      | 17<br>659501<br>26.388435             |    | pecialty Genes                                                 |              |          | 3 Biotech                                                                                                                    |  |  |
| Genome Length                |                                       |    |                                                                | * Source     |          | show more >>                                                                                                                 |  |  |
| GC Content<br>Contig L50     |                                       |    | /irulence Factor                                               | Victors      | 4        |                                                                                                                              |  |  |
| Contig N50                   | 481804                                | V  | /irulence Factor                                               | PATRIC_VF    | 3        |                                                                                                                              |  |  |
| Annotation Statistics        |                                       |    | Fransporter                                                    | TCDB 3       |          |                                                                                                                              |  |  |
|                              | **                                    |    | here Terret                                                    | Developments | 44       |                                                                                                                              |  |  |

### References

- <u>Comprehensive Genome Analysis Service</u>
- <u>Comprehensive Genome Analysis Service Tutorial</u>
- Genome Assembly Service Quick Reference Guide
- Genome Annotation Service Quick Reference Guide
- Phylogenetic Tree Building Service Quick Reference Guide
- Genome Annotation Protocol
- <u>RASTtk: A modular and extensible implementation of the RAST algorithm for building custom</u> annotation pipelines and annotating batches of genomes